Global solutions for the stochastic reaction-diffusion equation with super-linear multiplicative noise and strong dissipativity
نویسندگان
چکیده
A condition is identified that implies solutions to the stochastic reaction-diffusion equation ?u ?t=Au+f(u)+?(u)W? on a bounded spatial domain never explode. We consider case where ? grows polynomially and f dissipative, meaning strongly forces toward finite values. This result demonstrates role deterministic forcing term plays in preventing explosion.
منابع مشابه
Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise
We compare Wiener chaos and stochastic collocation methods for linear advectionreaction-diffusion equations with multiplicative white noise. Both methods are constructed based on a recursive multistage algorithm for long-time integration. We derive error estimates for both methods and compare their numerical performance. Numerical results confirm that the recursive multistage stochastic colloca...
متن کاملStochastic reaction - diffusion systems with multiplicative noise and non - Lipschitz reaction term
We study existence and uniqueness of a mild solution in the space of continuous functions and existence of an invariant measure for a class of reaction-diffusion systems on bounded domains of R , perturbed by a multiplicative noise. The reaction term is assumed to have polynomial growth and to be locally Lipschitz-continuous and monotone. The noise is white in space and time if d = 1 and colour...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملWell-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise∗
We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces .
متن کاملWell-posedness and Ergodicity for Stochastic Reaction-diffusion Equations with Multiplicative Poisson Noise
We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2022
ISSN: ['1083-6489']
DOI: https://doi.org/10.1214/22-ejp740